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Abstract
We derive a variant of a density based embedded cluster approach as an
improvement to a recently proposed embedding theory for metallic substrates
(Govind et al 1999 J. Chem. Phys. 110 7677; Klüner et al 2001 Phys. Rev. Lett.
86 5954). In this scheme, a local region in space is represented by a small cluster
which is treated by accurate quantum chemical methodology. The interaction
of the cluster with the infinite solid is taken into account by an effective one-
electron embedding operator representing the surrounding region. We propose
a self-consistent embedding scheme which resolves intrinsic problems of the
former theory, in particular a violation of strict density conservation. The
proposed scheme is applied to the well-known benchmark system CO/Pd(111).

1. Introduction

The geometric and electronic structure of surfaces and adsorbate–substrate systems can
routinely be calculated by modern quantum mechanical approaches. Continuous development
of theoretical concepts and numerical improvement of existing algorithms allow for reliable
simulations which have become an integral tool for the interpretation and microscopic
understanding of many surface science experiments.

In general, two conceptually different theoretical approaches exist for electronic structure
calculations of surfaces and bulk materials. In the first approach, the electronic Schrödinger
equation (or Schrödinger-like variational equation for the density) is solved with respect
to periodic boundary conditions. However, this supercell ansatz is currently restricted
to Hartree–Fock (HF) and density functional theory (DFT). In Hartree–Fock, electron
correlation is omitted by definition while in DFT the exact exchange–correlation functional
is unknown. Despite recent developments in the construction of new functionals [1–3] and
promising proposals of theories beyond Hartree–Fock and DFT including periodic boundary
conditions [4, 5], no generally accepted theory exists which provides a well-defined treatment
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of electron correlation with respect to periodic boundary conditions, in particular for systems
characterized by a delocalized electronic structure.

In the second approach, a representative section of a surface, a cluster, is treated by either
DFT or conventional quantum chemical methods [6–9]. The latter approach allows for a
well-defined treatment of electron correlation, since taking the HF solution of the electronic
Schrödinger equation as a starting point, a systematic hierarchy of approximations exists
to eventually arrive at the numerically exact solution (complete configuration interaction).
Furthermore, the calculation of electronically excited states via configuration interaction (CI)
is straightforward [10–14] in contrast to conventional DFT, although some promising concepts
also exist within time-dependent density functional theory and the GW approximation to the
self-energy [15–22].

However, a cluster does not obey the translational symmetry of a surface or bulk material,
since periodic boundary conditions are not generally applicable to explicitly correlated
calculations. This is the well-known main drawback of the cluster approach. Nevertheless,
some materials (such as halides and many oxides) exhibit a sufficiently localized electronic
structure to be accurately treated by a reasonably small cluster. For these systems, supercell
and cluster approaches yield virtually identical results if the same level of theory with respect
to the treatment of electron correlation is applied. A necessary condition for this similarity
turns out to be a proper embedding of the cluster. In ionic systems a proper embedding can
easily be realized by a large array of point charges, which ensures the correct electrostatic
potential within the crystal or at the surface. In contrast to this, a proper embedding of
systems characterized by a delocalized electronic structure, such as metals, turns out to be
far more difficult. Promising approaches have been reported such as ‘dipped adcluster’
embedding [23], and the pioneering cluster-in-cluster ansatz of Whitten et al [24–26] certainly
offers a valuable perspective. However, the inherent lack of periodic boundary conditions
remains, and convergence of properties with respect to cluster size still has to be considered
as a severe drawback for systems exhibiting a delocalized electronic structure. Nevertheless, a
variety of different embedding schemes have been proposed and successfully applied to systems
characterized by completely different electronic structures [25, 27–42].

Recently, a new embedding theory has been proposed which combines the benefits
of supercell and cluster approaches, and additionally allows for a reliable calculation of
electronically excited states of adsorbates on metal surfaces [43–46].

In the present paper, we re-investigate this approach from a theoretical point of view and
propose formal extensions to the existing theory. In particular, we investigate how specific
approximations introduced in the current formalism can be improved. The formal analysis of
the embedding theory will be presented in the first section of this paper. Subsequently, we will
propose an important extension of the current theory concerning a self-consistent treatment of
the total density. This extension includes a dynamical update of the total density, similar to
the idea of Wesolowski and Warshel [34]. The formalism and its implementation have been
introduced by one of us [47] and have subsequently been applied by Huang et al [48].

The performance of our new approach will be demonstrated by the calculation of
adsorption energies of the benchmark system CO/Pd(111). Finally, we will provide future
perspectives and an outlook to further improvements with respect to the generalization of the
existing embedding theory.

2. Theory

In this section, we will summarize the status of the embedding theory as proposed in [43–46].
The analysis of the current formalism will reveal significant drawbacks of the original approach
but will simultaneously demonstrate how to improve the existing concept.
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The central idea of any embedding theory is the partitioning of the total system in
(at least) two subsystems. The region of interest which might be an adsorption site on a
surface or a defect in a crystal will be denoted as region I. This region should be treated as
accurately as possible while the remainder of the system (region II) can be calculated using
less accurate methods. Thus, region II is not of interest as such but only its influence on region
I has to be considered. According to this approach, the system Hamiltonian Ĥ is composed
of the Hamiltonians of the two subsystems (ĤI, ĤII) and an interaction Hamiltonian ĤINT,
respectively:

Ĥ = ĤI + ĤII + ĤINT. (1)

This definition furthermore implies a partitioning of the total energy, i.e.

Etot = EI + EII + EINT. (2)

Thus, the interaction energy can be expressed as

EINT = Etot[ρtot] − EI[ρI] − EII[ρII], (3)

where we introduce the total electron density of the system, ρtot, and the densities of the
subsystems ρI and ρII, respectively. Of course, the total density should be the sum of the
subsystem densities, i.e.

ρtot(r) = ρI(r) + ρII(r). (4)

Now, the effective embedding operator acting on region I is defined by the functional
derivative of the interaction energy with respect to the density in region I,

v̂emb(r) = δEINT

δρI(r)
= δEtot

δρI(r)
− δEI

δρI(r)
− δEII

δρI(r)
, (5)

where the explicit dependence of the energies on the corresponding densities has been omitted
for reasons of simplicity. Using the chain rule for functional derivatives results in the following
expression:

v̂emb(r) =
∫

δEtot

δρtot(r ′)
δρtot(r ′)
δρI(r)

dr ′ − δEI

δρI(r)
−

∫
δEII

δρII(r ′)
δρII(r ′)
δρI(r)

dr ′. (6)

Next, equation (4) can be inserted in equation (6) resulting in:

v̂emb(r) =
∫

δEtot

δρtot(r ′)
δ(ρI(r ′) + ρII(r ′))

δρI(r)
dr ′ − δEI

δρI(r)
−

∫
δEII

δρII(r ′)
δρII(r ′)
δρI(r)

dr ′

=
∫

δEtot

δρtot(r ′)

(
δρI(r ′)
δρI(r)

+ δρII(r ′)
δρI(r)

)
dr ′ − δEI

δρI(r)
−

∫
δEII

δρII(r ′)
δρII(r ′)
δρI(r)

dr ′

=
∫

δEtot

δρtot(r ′)
δ(r − r ′) dr ′+

∫
δEtot

δρtot(r ′)
δρII(r ′)
δρI(r)

dr ′

− δEI

δρI(r)
−

∫
δEII

δρII(r ′)
δρII(r ′)
δρI(r)

dr ′

= δEtot

δρtot(r)
− δEI

δρI(r)
+

∫ (
δEtot

δρtot(r ′)
− δEII

δρII(r ′)

)
δρII(r ′)
δρI(r)

dr ′. (7)

In equation (7) all three densities ρI(r), ρII(r) and ρtot(r) are used to calculate the embedding
operator. From a self-consistent cluster calculation and from the density conservation as stated
in equation (4), it is just possible to determine two densities at most. Therefore, it is necessary
to introduce the following approximation as one possible choice at this point:

δρII(r ′)
δρI(r)

∣∣∣∣
r=r ′

= 0. (8)
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Equation (8) states the densities of regions I and II to be linearly independent functions,
implying that a variation of the electron density in region I does not affect the density attributed
to the surrounding region II. Note that this approximation does not imply the neglect of
interaction between the two regions, since the presence of the background density yields the
effective embedding potential. However, the approximation introduced by equation (8) already
implies that great care has to be taken in the construction of the background density. Since it
will not be influenced by variations of the density in region I, it should be chosen as accurately
as possible at the beginning of the calculation. This issue will be addressed in detail in section 4.
The assumption of equation (8) leads to a neglect of the integral in equation (7), resulting in the
following embedding operator:

v̂emb(r) = δEtot

δρtot(r)
− δEI

δρI(r)
. (9)

The total energy and the energy of region I contain different contributions each of which
can be expressed within DFT and resulting in the following functional form of the embedding
operator [45, 46]:

v̂emb(r) = δTS[ρtot]
δρtot

− δTS[ρI]
δρI

+ δENE[ρtot]
δρtot

− δENE[ρI]
δρI

+ δEXC[ρtot]
δρtot

− δEXC[ρI]
δρI

+ δ J [ρtot]
δρtot

− δ J [ρI]
δρI

= δTS[ρtot]
δρtot

− δTS[ρI]
δρI

+ (V tot
NE − V I

NE) + (V tot
XC − V I

XC) + (V tot
H − V I

H). (10)

Here, TS, ENE, EXC, J denote the kinetic, electron–nuclear attraction, exchange–correlation
and Coulomb repulsion energy functionals, respectively.

In ab initio quantum chemical cluster calculations, Hartree–Fock (HF) theory serves as a
starting point for more accurate calculations in which electron correlation effects are explicitly
accounted for. Given the functional form of the embedding potential as an effective one-
electron operator (cf equation (9)), it enters the HF-equations as an additive term to the Fock
matrix, i.e. ∑

ν

(
Fμν + Mμν

)
Cν,i = εi

∑
ν

SμνCν,i . (11)

Fμν and Sμν denote the Fock and overlap matrix elements in the Gaussian atomic orbital basis,
whereas εi and Cν,i are the orbital energies and molecular orbital expansion coefficients for the
i th molecular orbital, respectively. Mμν is the matrix representation of the embedding operator
v̂emb in the atomic orbital (AO) basis set, i.e.

Mμν = 〈χμ|v̂emb|χν〉. (12)

Details of the explicit implementation of the various terms in equation (9) can be found
elsewhere [45, 46] and will not be discussed in the present paper.

However, one further approximation was introduced in previous studies and should be
noted: the total density, ρtot, was evaluated only once at the beginning of an embedding
calculation and was kept frozen (FR) during the self-consistent (SC) solution within region
I for convenience, resulting in a partially self-consistent embedding potential, i.e.

v̂emb(r) =
(

δEtot

δρtot(r)

)
FR

−
(

δEI

δρI(r)

)
(SC)

. (13)

Note, that in addition to all terms containing the total density, the kinetic energy contribution
δTS[ρI]

δρI
was kept frozen as well. This approximation is indicated by the index in parenthesis

‘(SC)’ and was justified in our earlier studies [43, 44].

4



J. Phys.: Condens. Matter 19 (2007) 226001 D Lahav and T Klüner

The frozen density approximation for ρtot(r) might seem reasonable at first glance, since a
sufficiently small region I might not severely modify the total density of the system. However,
we will now demonstrate that it necessarily violates the density conservation introduced in
equation (4).

In fact, equation (13) implies an imbalanced treatment of the potential arising from the
total density and the potential due to region I, since only in the hypothetical case of an infinitely
small region I does this equation result in the exact limiting case.

In the realistic case of a finite region I, this analysis reveals a dilemma of the current
embedding theory according to the potential introduced in equation (13). In any embedding
theory, a faithful treatment of the embedded system should be improved by an extension of the
region I, which—as the region of interest—is treated as accurately as possible. Region I should
not only be investigated at the currently highest level of theory (e.g. CCSD(T) or MRCISD),
but also the cluster size representing region I should be as large as possible only limited by
computational resources. However, a substantial spatial increase of region I is prohibited by
the results of the preceding analysis. In other words, an increase of cluster size representing
region I might not necessarily improve the description of the embedded system since the
aforementioned conditions may not be fulfilled. In particular, equation (13) implies a violation
of the density conservation as stated in equation (4). If the electron density in region II is not
affected by a change of the density in region I, as equation (8) implies, and the total electron
density is constant by definition according to equation (13), than equation (4) cannot be fulfilled
since ρI(r) is self-consistently updated (e.g. in a Hartree–Fock self-consistent field (SCF)
scheme), while ρtot(r) and ρII(r) are constant by definition with respect to a variation of ρI(r).

In order to solve this apparent dilemma, we introduce a refined embedding theory
which partially removes the restrictions imposed by previous approaches and resolves the
aforementioned contradiction. In fact, we keep the restriction of ρII(r) being independent with
respect to a variation of ρI(r) (as stated above, this approximation is valid for the surface–
adsorbate system discussed here), but we do not impose any restriction on the total electron
density, ρtot(r), i.e. the embedding operator is evaluated through:

v̂emb(r) =
(

δEtot

δρtot(r)

)
SC

−
(

δEI

δρI(r)

)
(SC)

. (14a)

Note, that in equation (14) all terms are treated self-consistently except for the kinetic
energy contribution δTS[ρI]

δρI
. For comparison we will also investigate an embedding operator in

which, in addition to δTS[ρI]
δρI

, the kinetic energy term of the total density, i.e. δTS[ρtot]
δρtot

, is kept
frozen as well, resulting in the following embedding operator:

v̂emb(r) =
(

δEtot

δρtot(r)

)
(SC)

−
(

δEI

δρI(r)

)
(SC)

. (14b)

The idea of a self-consistent update of all densities involved in an embedding scheme
was proposed by Wesolowski and Warshel [34] and has been successfully applied in recent
studies [33, 48].

Actually, a first approximation of the total electron density is evaluated in the first step of
our embedding calculation, and is subsequently updated during the self-consistent solution
within region I according to equation (4). Thus, ρII(r) is calculated in the very first step
of the iterative scheme using equation (4). In the subsequent execution of the iterative SC
scheme, the total density (and all terms arising in the embedding potential corresponding to
the total density, cf equation (10)) is updated iteratively. Therefore, density conservation
according to equation (4) is inherently ensured by definition. Note that this update of the
total density represents a significant step towards a fully self-consistent embedding scheme,

5
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Figure 1. Schematic representation of a Hartree–Fock calculation within a self-consistent
embedding scheme using a dynamically updated total density. SCF denotes a Hartree–Fock-
SCF calculation. The equations for the construction of potentials and densities are denoted by
equations (4) and (10), respectively.

since the restriction that terms containing the total density (half of all contributions to the
embedding potential) are frozen is removed. In figure 1, we demonstrate the scheme of this
refined embedding calculation opposed to the previously introduced theory. From a formal
point of view, the main advantage consists of the strict electron density conservation.

In order to elucidate the consequences of this refined embedding scheme, we will present
investigations on the benchmark system Pd(111)/CO which has been the subject of many
investigations over recent years [49–58].

3. Details of calculations

3.1. DFT supercell calculations

In order to obtain the total electron density, ρtot(r), of a system, the first step in an embedding
calculation is a periodic supercell DFT calculation, for which a commercial version of the
CASTEP program package [59] as implemented in Cerius2 has been used1. The Pd(111)
surface was modelled by a three-layer slab containing eight atoms per layer. A three-layer
slab was found to be sufficiently thick to give converged results for adsorption energies and
geometries with respect to the number of layers used. One CO molecule was placed at the
experimentally preferred fcc hollow site on one side of the slab simulating a coverage of
0.125 monolayers. The simulation cell was large enough (5.52 Å × 9.55 Å × 16.00 Å) to
prevent an artificial interaction between adjacent periodic slab images normal to the Pd(111)
surface. A full geometry optimization was performed for the adsorbed CO molecule, while
the slab geometry was chosen to be identical to the experimental bulk lattice constant. Surface
relaxation effects were found to be of minor importance for the properties of interest such
as adsorption energies. In all calculations a plane wave cut-off energy of Ecut = 700 eV
and a surface Brillouin zone sampling with nine special k-points was found to be sufficient to
obtain accurate adsorption energies with an estimated maximum error of about 0.1 eV. Nonlocal
norm-conserving pseudopotentials [60] were used to replace the nuclei and core electrons,
and the PW91-GGA functional for exchange and correlation was chosen. All parameters of
the calculations (supercell size, k-point sampling, plane-wave cut-off) have been subject to
convergence studies. Within this model, an adsorption energy of �EDFT

slab = −1.71 eV and a
linear adsorption geometry of the CO molecule were obtained. Experimental results of Guo
et al [50] and Conrad et al [49] predict a lower binding energy of E = −1.54 and −1.47 eV.
The internal CO distance was found to be d(C–O) = 1.172 Å and the distance of the carbon
molecule from the surface turned out to be d(C–surface) = 1.362 Å. This is in reasonable
agreement with other theoretical and experimental data [49–58].

1 Cerius2 is provided by Accelrys Inc.
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3.2. Embedded cluster calculations

After the total density ρtot has been obtained from a periodic DFT calculation, ab initio
embedded cluster calculations were performed as the second step of our embedding approach.
The smallest cluster to model the adsorption of CO at a fcc hollow site of a Pd(111) surface
consists of three Pd atoms (Pd3) and the CO molecule. For consistency with the periodic
DFT calculations, the core electrons and nuclei were replaced by large core effective core
potentials (ECP) [61]. For an accurate description of the valence electrons, a double-zeta basis
set turned out to be sufficient [47]. The basis set superposition error (BSSE) was estimated by
the counterpoise correction scheme of Boys and Bernardi [62] to be about 0.1 eV for interaction
energies [44]. All calculations have been performed with a modified version of the HONDO
quantum chemical program package [59]. For the calculation of adsorption energies, the HF
and MP-n level of theory has been applied.

3.3. Embedding potential and local correction of the total DFT energy

As already discussed in previous publications, all contributions to the effective embedding
potential as given by equation (10) can be calculated straightforwardly [43–46]. In particular,
the evaluation of the kinetic energy potentials by application of the locally truncated
conventional gradient expansion (CGE) has been shown to be a practical and sufficiently
accurate approach.

Once an embedded cluster calculation has been performed in region I, the total embedding
energy, Eemb

tot , is obtained according to equation (15)

Eemb
tot = EDFT

tot + (Eab
I − EDFT

I ), (15)

where EDFT
tot denotes the total DFT energy of the preceding slab calculation. Eab

I and EDFT
I are

defined as the ab initio and DFT energy in region I in the presence of the embedding potential.
Again, details of the derivation of equation (15) and the explicit calculation of the various
terms can be found elsewhere [43–46]. Note, that equation (15) represents a local correction to
periodic density functional theory within region I.

4. Results

As already mentioned in section 2, the refined embedding theory introduced in the present
paper removes the limitation of our former approach of ρtot(r) being constant irrespective of
a variation of ρI(r). This approach is favourable from a formal point of view, since it ensures
density conservation as implied by equation (4) and does not result in contradictions pointed
out in section 2. However, ρII(r) is frozen by definition as implied by equation (8) and can
be obtained as the difference of the total density and the density in region I, which have to be
determined before the embedded calculation, according to equation (4). Naturally, the question
arises of which density ρII(r) should be used in actual applications. One possible choice would
be to calculate the density of region II according to equation (16)

ρII(r) = ρDFT
tot (r) − ρDFT

I (r). (16)

Here, ρDFT
I (r) is obtained by a DFT cluster calculation within region I in the presence of an

embedding potential in which all contributions containing the total density are kept frozen (cf
equations (10) and (13)). It has been demonstrated, that such a DFT-in-DFT embedding scheme
results in a reasonably accurate representation of ρDFT

I (r) when compared with ρDFT
tot (r) within

region I [44]. Thus, application of equation (16) in order to calculate ρII(r) will result in a
faithful representation of the electron density in region II.
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Table 1. Adsorption energies of CO/Pd(111). The different embedding schemes are defined in
equations (14a), (14b) and (13).

Embedding scheme E(HF) (eV) E(MP-2) (eV) E(MP-4) (eV)

DTD-14a −1.44 −1.63 −1.79
DTD-14b −1.84 −1.94 −2.09
FTD-13 [43, 44] −2.13 −1.42 −1.55
Experiment (eV) [49, 50] −1.47 to −1.54

Note, that ρII(r) is calculated only once and subsequently used in a self-consistent update
of the total density. Therefore, in each iteration k of a Hartree–Fock self-consistent field
calculation, the total density is updated via

ρtot(r)k = ρII(r) + ρI(r)k (17)

and all corresponding terms of the embedding operator are updated. In previous calculations
using the embedding operator of equation (13), the kinetic energy potential arising from region
I was never subject to a self-consistent embedding treatment, but was evaluated once at the
beginning of an embedded cluster calculation using an ab initio electron density obtained
from a bare, i.e. non-embedded, Hartree–Fock cluster calculation. This approximation was
rationalized in recent publications [43–46] and will not be discussed further in this paper.

Table 1 contains adsorption energies for the CO/Pd(111) system at different levels
of theory. In all calculations the PW91 exchange–correlation functional and the locally
truncated conventional gradient expansion for the kinetic energy (CGE) have been used in the
corresponding terms of the embedding potential. In general, the embedding operator containing
a dynamic total density (DTD-14a) as defined in equation (14a) is used. However, table 1
also contains results where all kinetic energy terms in the embedding potential are kept frozen
(DTD-14b), equation (14b). For comparison, we also include results obtained by the frozen
total density (FTD-13) embedding operator as defined by equation (13) and as used in previous
studies [43, 44].

On the MP-4 level of theory, the use of embedding operators as defined by equation (14b)
does not yield satisfactory results. Evidently, the self-consistent calculation of δTS[ρtot]

δρtot
is

mandatory for a faithful description of the embedding potential (equation (14a)). Given the fact
that the adsorption energies are not corrected for the BSSE, an overestimation of the adsorption
energy of about 0.1–0.2 eV can be expected. Therefore, the results obtained within our refined
embedding theory are in very good agreement with experimental data.

However, the question arises whether a complete self-consistent treatment of the
embedding operator in which also δTS[ρI]

δρI
is dynamically updated further improves the results

obtained. Unfortunately, this is not the case. While the inclusion of this term in the former,
partially self-consistent, embedding theory (FTD-13) resulted in severe convergence problems,
the situation is improved in the refined theory (DTD-14a). However, the results obtained are
not in agreement with the experimental data. The calculated CO binding energy at the MP-2
level of theory is strongly underestimated (E = −0.73 eV). This fact underlines the sensitivity
of kinetic energy terms in the embedding potential with regard to the actual details of the
calculation.

In order to further clarify this point, we investigated the influence of the kinetic energy
functional used. Table 2 contains adsorption energies using the CGE up to first and second
order, respectively. In the former case, only the Thomas–Fermi (TF) functional as the leading
term of the expansion is included, while in the latter case (CGE), gradient corrections are
applied by the use of the von Weizsäcker term. Interestingly, the refined embedding theory

8
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Table 2. Adsorption energies of CO/Pd(111). Results obtained with different kinetic energy
functionals in embedding schemes defined in equations (14a) and (13).

Embedding scheme E(HF) (eV) E(MP-2) (eV) E(MP-4) (eV)

DTD-14a TF only −1.43 −1.78 −1.93
DTD-14a CGE −1.44 −1.63 −1.79
FTD-13 TF only −1.77 −2.28 −2.37
FTD-13 CGE −2.13 −1.42 −1.55

Table 3. Adsorption energies of CO/Pd(111). Comparison of two embedding schemes using
different densities ρII(r) (equation (16); equation (18)).

ρII(r) E(HF) (eV) E(MP-2) (eV) E(MP-4) (eV)

DTD-14a (equation (16)) −1.44 −1.63 −1.79
DTD-14a (equation (18)) −2.10 −1.55 −1.69

(DTD-14a) is much less sensitive to the actual choice of the kinetic energy functional as
compared to the partially self-consistent embedding scheme (FTD-13). The MP-n energy
difference between calculations using the Thomas–Fermi functional and calculations using
the CGE within a completely self-consistent embedding operator is (with �E = 0.15 eV)
much smaller than the difference using the partially self-consistent embedding operator (�E =
0.8 eV). This relative insensitivity can be regarded as a further advantage of the current scheme,
which seems to be more robust with respect to model parameters.

An important feature of the completely self-consistent embedding scheme is the choice
of ρII(r). In order to elucidate how the explicit construction of ρII(r) influences the results
obtained, we performed alternative calculations using the following equation for the density in
region II:

ρII(r) = ρDFT
tot (r) − ρHF

I (r) (18)

i.e. ρII(r) is calculated by using a Hartree–Fock density in region I, again obtained under the
presence of an embedding potential as defined by equation (10). The results for the CO binding
energy are shown in table 3.

Although ρII(r) is calculated using different evaluation methods for ρI(r), the obtained
MP-n results are in good agreement with the results using equation (16) and the experimental
results. The important feature in the determination of ρII(r) is therefore to use an embedded
density ρI(r). This is confirmed by the results using a bare cluster density obtained from a
non-embedded DFT calculation to calculate ρII(r). Such an approach is not expected to give a
reasonable representation of ρII(r), since the density in region I will strongly differ depending
on the presence or absence, respectively, of an embedding potential. Thus, if such a bare DFT
cluster density is used to construct ρII(r), the CO binding energy of E(MP-2) = −3.79 eV
is strongly overestimated as compared with experiment. Although such a scheme has been
proposed in a recent study [48], our results strongly discourage the use of a bare cluster density
to calculate ρII(r).

5. Conclusions

In this paper we report on a refined embedding theory in which virtually all terms are subject
to a self-consistent treatment, only excluding δTS[ρI]

δρI
from a dynamical update. We demonstrate

that this new scheme not only removes a formal inconsistency of our previous approach,
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but also yields adsorption energies for the benchmark system CO/Pd(111) which are in good
agreement with experimental data. Nevertheless, further improvements of the theory are still
possible. Note, that even in our new scheme the electron density of region II is kept frozen
during an embedding calculation. This can be regarded as a drawback of the current approach
and work is in progress to lift this approximation with a perspective of a completely self-
consistent embedding potential including all densities. Such a scheme has been proposed
recently [47], and will be summarized in a forthcoming publication [63].
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